

HOW TO MITIGATE HARMFUL IMPACTS OF FLOODS?

The Nemcicky Catchment Case Study Czech Republic

Pavel KOVAR and Darina VASSOVA

CULS Faculty of Environmental Sciences Department of Land Use and Improvement

CASEE PhD STUDENT CONFERENCE Szent Istvan University, Gödöllö, Hungary, 28-29.4.2011

Do we have effective tools to mitigate harmful impacts of floods?

The current rationale behind prevention and mitigation of water disasters, i.e. floods and droughts

- In the past 10 years:
 - 450 thousands people lost their lives in devastating flood events
 - 1.5 billions people became affected by floods
 - 0.7 billions people became affected by droughts

 80% of all world catastrophes were disasters caused by floods and droughts → Damage caused = 370 billions USD

What causes floods?

- Hydrometeorological conditions
 - Small catchments: Torrential rainfalls
 - Large catchments: Combinations of regional and torrential rainfalls
 - Most important criteria: Depth P(mm) and Intensity i(mm · min⁻¹) of rainfall
- Antecedent saturation of the catchment's upper soil zone
 - Antecedent precipitation index API (mm) in 30 days
 - Soil moisture deficit SMD (mm) continuously
- Measures for increasing retention/accumulation of water
 - Decreasing direct (surface) runoff

Historic and present hydraulic structures and biotechnical measures

Flood analyses results

Tools: Data processing by means of:

- Remote sensing and GIS methods
 - Orthophotomaps
 - Satellite imaging
 - Rainfall-runoff data processing
 - Analyses of maps using GIS
- Analogy and comparative methods
 - Flood areas and soil maps (match of fluvisols)
- Mathematical models
 - Rainfall-runoff event models ($\Delta t \leq 1 \text{ day}$)
 - Water balance models ($\Delta t \ge 1$ day)

Soil moisture deficits SMD on the Vseminka and Drevnice catchments

Deterministic models

- Conceptual (+ Lumped)
 - SCS (CN-curves) + standard TUH
 - Ex.: HEC-HMS/WMS, INFIL
 - Reservoir models
 - Ex.: Tank model, NASH, NONLINEAR
- Physically based (+ Distributed)
 - Muskingum-Cunge (conceptual / physically based)
 - HEC-RAS (river channel + inundation (river plain))
 - KINFIL (geometrical network: infiltration + kinematic system
 - MIKE-SHE (universal hydrological model flexible)

U. S. SCS/NRCS Model: Curve Number Method

• Principle:

- if P Q = S, Q = 0.0 (no runoff)
- if P Q = 0.0, Q = P (max. runoff)

U. S. SCS/NRSC Model

Principle:

$$Q = \frac{(P - I_a)^2}{P - I_a + S} = \frac{(P - 0.2S)^2}{P + 0.8S} \to P \ge 0.2S$$
$$S = 25.4 \cdot \left(\frac{1000}{CN} - 10\right), \ CN \in \langle 0; 100 \rangle$$

- CN determination:
 - Hydrological soil group (A–D): soil maps
 - Land use
 - Antecedent soil moisture (3 types)
- Advantages:
 - Rationality, simplicity, data availability
 - Easy application on ungauged catchments
- Disadvantages:
 - Weak physical background
 - Does not include data on rainfall intensity and duration

Principle of the linear reservoir model

- Linear equation
 - $\frac{S(t) = K \cdot Q(t)}{dt} = K \frac{dQ(t)}{dt}$
- Continuity equation $\frac{dS(t)}{dt} = I(t) - Q(t)$
- Combination of both

$$K \frac{\mathrm{d}Q(t)}{\mathrm{d}t} + Q(t) = I(t)$$

KINFIL model principle (Physically based + distributed)

- Infiltration computation
 - Green Ampt and Morel-Seytoux

$$K_{s}\left(\frac{Z_{f} + H_{f}}{Z_{f}}\right) = \left(\theta_{s} - \theta_{i}\right)\frac{\mathrm{d}Z_{f}}{\mathrm{d}t}$$
$$S_{f} = \left(\theta_{s} - \theta_{i}\right) \cdot H_{f}$$
$$t_{p} = \frac{S_{f}}{i \cdot \left(\frac{i}{K_{s}} - 1\right)}$$

 Hill-slope flowingkinematic wave:
– Lax-Wendroff scheme

$$\frac{\partial h}{\partial t} + \alpha \ mh^{m-1} \frac{\partial h}{\partial x} = r_e(t)$$

Case study of the Nemcicky catchment

Characteristics of the Nemcicky catchment

Catchment area	3.5 km ²	Min. altitude	556 m a.s.l.	
Main channel length	1.9 km	Max. altitude	651 m a.s.l.	
Main channel slope	2.1%	Basin perimeter	9.0 km	

Land use of the catchment

Arable land	58.9%	Urban area	4.7%
Permanent grassland	0.9%	Other	6.5%
Forest	35.0%		

Hydrologic soil groups

Soil groups	В		(D	
	%	CN	%	CN	%	CN
Arable land	36.4	81	16.0	88	0.6	91
Permanent grassland	0.4	58	0.5	71	_	Ι
Forest	31.5	60	0.4	73	0.1	79

Experimental catchment of the Nemcicky Stream: Land Use

Experimental catchment of the Nemcicky Stream: Hydrologic Soil Groups

250 500 1 000 Meters

© VÚMOP Praha, Oddělení pozemkových úprav Brno, 2006 novotny.ivan@vumopbrno.cz

Experimental catchment of the Nemcicky Stream: Curve Numbers

250 500 1 000 Meters

© VÚMOP Praha, Oddělení pozemkových úprav Brno, 2006 novotny.ivan@vumopbrno.cz

Schematization of the Nemcicky catchment (for the KINFIL model)

Casada	Diana	Aroa	Mean width	Longth	Slope	Arable land	Permanent	Forest	Urban area	Other
Cascade	Plane				Siope		grassianu	r orest		
		[ĸm ⁻]	[ĸm]	[ĸm]	[%]	[%]	[%]	[%]	[%]	[%]
DL11	111	0.176	0.979	0.179	2.2	69.1	0.0	2.6	12.4	15.9
	112	0.088	0.979	0.090	5.3	86.1	1.0	0.0	0.9	12.0
DL12	121	0.130	1.027	0.127	2.9	52.9	3.2	0.0	38.7	5.2
	122	0.183	1.027	0.178	4.5	49.2	0.0	0.0	20.8	29.9
	123	0.254	1.027	0.247	10.0	58.1	6.6	0.0	10.0	25.3
DL13	131	0.044	0.960	0.046	5.2	95.7	1.7	0.0	1.3	1.2
	132	0.444	0.960	0.463	7.2	93.3	0.0	0.2	3.1	3.5
DP21	211	0.187	0.979	0.191	5.5	60.2	0.0	36.3	0.5	3.1
DP22	221	0.047	1.027	0.046	2.9	97.7	1.5	0.0	0.0	0.8
	222	0.147	1.027	0.143	5.5	86.4	4.1	0.9	1.3	7.2
DP23	231	0.319	1.452	0.220	7.8	55.2	0.0	42.0	0.0	2.8
	232	0.088	1.452	0.060	4.8	73.8	1.8	9.9	0.9	13.5
DP24	241	0.462	1.452	0.318	9.7	0.5	0.0	99.5	0.0	0.0
	242	0.070	1.452	0.048	6.4	3.5	0.0	92.9	2.6	1.0
DP25	251	0.067	0.694	0.097	10.6	0.0	0.0	96.1	3.9	0.0
	252	0.117	0.694	0.169	6.6	45.8	0.0	53.5	0.4	0.4
	253	0.053	0.694	0.076	3.8	92.8	0.0	0.0	0.0	7.2
DP26	261	0.288	0.266	1.084	11.7	1.9	0.0	96.3	1.8	0.0
	262	0.204	0.266	0.767	6.7	59.3	0.0	40.1	0.4	0.2
	263	0.141	0.266	0.530	4.5	95.5	0.0	0.1	1.3	3.1

Calibration of KINFIL parameters (K_s, S_f, L_i, W_i, i, n) – Nemcicky Stream

Calibration of KINFIL parameters (K_s, S_f, L_i, W_i, i, n) – Nemcicky Stream

Selection of design rainfalls

- Method of reduction of 1-day maximum rainfall $P_{t,N} = P_{1d,N} \cdot a \cdot t^{1-c}$ $i_{t,N} = P_{1d,N} \cdot a \cdot t^{-c}$
- One-day maximum rainfall $P_{1d,N}$ (mm) at Boskovice station

N – return period (years)								
2 5 10 20 50 100								
36.0	46.9	53.9	61.2	70.1	77.1			

Selection of design rainfalls

Design rainfall intensities – station Boskovice

Flood discharge simulation from N-years rainfalls

Design hydrographs of the Nemcicky catchment N = 10 years, $t_d = 30$, 60, 90 min

Flood discharge simulation from N-years rainfalls

Design inflow/outflow transformation by reservoir/polder in the Nemcicky catchment (Scenario techniques – model validation)

Resulting inflow/outflow hydrographs for time recurrence N = 10 and N = 100 years and for CN, corresponding to 15% reduction of an arable land

Conclusions

- The KINFIL model provides a good physical background
- Adaptive management approach is possible
- Application of new findings in hydrology
- Realistic scenario simulation (both human intervention and climate change)

Effective mitigation of harmful flood impacts

- Proper land use policies
- Landscape structure, mosaic displacement, roads network – drainage pattern, natural retention, wetlands
- Natural hydrographical network: geomorphological diversity, conveyance of discharges, channel versus inundation (flood plain)
- Erosion control measures: depressions, dikes, terraces, torrent control, gully control
- River network diversity, bifurcations, blind streams, delta areas, natural depressions/inundations
- Small reservoirs, (fish) ponds, retention barriers
- Dikes and polders
- Weirs and dams

FLOODS

Five types of measures:

- Early warning: Information, Warning: four elements of people centred warning systems:
 - Risk knowledge (systematic data collection)
 - Monitoring & warning service
 - Communicate risk information- dissemination
 - Response capability (reaction to warning)
- Pre-flood measures: Last time physical prevention:
 - evacuation
 - sand sack providing
 - mobile gates installation

 Rescue execution: Continuing flood forecast and warning, rescue team- evacuation, housing and dormitory facilities

- Post flood measures: flood water drainage, pumping, drying
- Long-time measures:

<u>Technical:</u> Flood areas zoning, technical measures from: land use changes via: river discharge capacities increasing to: diking, poldering, reservoirs and dams operation

Legislative: EU and national WF Directives, reimburses of flood damages, insurance companies involvement, training of integrated teams (firemen, police,health service, civil service, volunteers,etc.)

THANK YOU FOR YOUR ATTENTION