Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Department of Water Resources and Environmental Modeling FES CULS Prague

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Introduction

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Flood event – Characteristics

Simulation Results

Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment

Lead time vs Efficiency Ensemble Forecast

Conclusions

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q-P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Small Headwater Catchments

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory

Objectives

Data Based Runoff Forecast

Q–P Linear Model

PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results

Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment

Lead time vs Efficiency Ensemble Forecast

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Small Headwater Catchments

Small Headwater Basins

- Area < 500 km 2
- Fast runoff response LAG TIME \rightarrow several hours
- There are basins, where it is impossible to perform runoff forecast.

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory

Objectives

Data Based Runoff Forecast

Q-P Linear Model

PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results

Real Time Runoff Forecast PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Enrecast

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Small Headwater Catchments

Small Headwater Basins

- Area < 500 km 2
- Fast runoff response LAG TIME \rightarrow several hours
- There are basins, where it is impossible to perform runoff forecast.

Flood Events and LWS

- \bullet Prevailing Flood Events \rightarrow caused by extreme rainfalls
- Both Thunderstorms and Frontal Rainfalls
- The Challenge → improving and developing flood runoff forecast and incorporating it into the Local Warning Systems.

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory

Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Flood Memory – Flood Event 1925

Figure: Flash Floods (Basta, 2011) Extreme Precipitation \rightarrow 78[mm/hour], 132 [mm/3 hours] Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory

Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Flood Memory – Flood Event 2009

Figure: Warnings Issued by the CHMI (ME CR, 2010)

Red dots \rightarrow HIGH EXTREME

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory

Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Aims

- The analysis of local flood events in small catchments.
- 2 The preparation of Flood Event Set.
- The development of SIMPLE forecasting tool used in LWS.
- The test of flood forecast in different conditions

Flood forecast:

- Flood runoff forecast with different lead times.
- Flood runoff forecast in un-gauged catchments.
- The uncertainty assessment and ensemble forecast.

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff

Forecast Q-P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Data Based Modeling

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model Apolication Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

◆□> <畳> < Ξ> < Ξ> < Ξ</p>

Simple linear transfer function model

Linear model

$$Q(t) = \sum b_i Q(t-i) + \sum p_i P(t-i)$$
 (1)

- Combined rainfall and runoff history
- Parameters \rightarrow length of histories
- \bullet Parameter estimation \rightarrow ordinary least square method
- Tested Extended versions of Q-P Linear model

$$Q(t+Lag) = \sum b_i Q(t-i-Lag) + \sum p_i P(t-i-Lag)$$
(2)

Applied for the runoff forecast in real time

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q-P Linear Model

PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

PONS – Nonlinear Model

Prediction of Outflow via Neural networkS

MLP

Hornik – MLP with 1 HL \rightarrow approximation of bounded continuous integrable function

PONS core

- feed-forward neural network
- neurons with different nonlinear activations
- back-propagation with momentum
- on-line training
- nonlinear exponential data transformation
- MLP with 1HL and 2HD
- open-source written in c++ http://kvhem.cz

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff

Forecast

Q–P Linear Model

PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

MLP example

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model

PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Data preparation

- calibration and validation sets of flood events
- chronological and non-chronological sorting
- nonlinear exponential transformations (PONS)

Runoff Forecast

- Q–P and PONS model parameters optimization
- preparing the real-time forecasting mode (Research Institute for Soil and Water Conservation)
- runoff forecast on ungauged catchment
- uncertainty tests

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model

PONS - Nonlinear Model Application Procedure

Flood Events

Flood event – Characteristics

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Analyzed Flood Events

Figure: 16 Analyzed Watersheds

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Micro Catchments

Figure: Temporal Flood Event Characteristics

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

▲□▶▲□▶▲□▶▲□▶ ■ のQC

Large Catchments

Figure: Temporal Flood Event Characteristics

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ● 目 ● のへで

Runoff Forecast

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results

Real Time Runoff Forecast PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency

Ensemble Forecast

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Results – Weak points

- Time shift in peak discharge prediction
- **2** High influence of correlation between Q(t) and Q(t-1)

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results

Real Time Runoff Forecast PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency

Ensemble Forecast

Conclusions

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ��

Results – Weak points

- Time shift in peak discharge prediction
- **2** High influence of correlation between Q(t) and Q(t-1)
- $\label{eq:KeyParameter} {\bf \Im} \ {\rm KeyParameter} \to {\rm Temporal\ resolution\ of\ Flood\ Event}$

Results – Strong points

- Functional real-time mode forecast of Q-P Linear model
- Very good results in runoff forecast during testing computations on 1997 and 2002 floods
- Overlapped good Application procedure

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast

PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Real time mode – Q–P linear model

Figure: Agricultural watersheds

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results

Real Time Runoff Forecast PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MLP Architecture

• 4 - 6 - 6

Q–P history

•
$$P(t-4)$$

•
$$Q(t-1), Q(t-2), Q(t-3)$$

MLP Training

- $\alpha = 0.009$
- $\eta = 0.01$
- $\mu = 0.3$
- number epochs 250

Calibration

- 4 extreme Floods
- 1985, 1996, 1999 and 2000

Validation Results NS

LT.	1996	1997
1	0.98	0.95
2	0.98	0.96
3	0.96	0.95
4	0.92	0.92
5	0.85	0.90
6	0.78	0.88
AVE.	0.91	0.92

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results

Real Time Runoff Forecast

Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□▶ ◆□

3-Hour Lead Time Forecast

Figure: Mohelnice-Raškovice – validation

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model Application Procedure Flood Events Flood event - Characteristics Simulation Results Real Time Rumoff Forecast PONS Model Forecast in Un-gauged Basin Uncertainty Assessment

Lead time vs Efficiency Ensemble Forecast

Conclusions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

6-Hour Lead Time Forecast

Figure: Mohelnice-Raškovice – validation

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model Application Procedure Flood Events Flood event - Characteristics Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Raškovice vs Morávka

Figure: Mohelnice 33 km² – Morávka 22 km²

◆□▶ ◆□▶ ◆目▶ ◆目▶ →目 → のへの

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model Application Procedure Flood Events Flood event - Characteristics Simulation Results Real Time Runoff Forecast PONS Model Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast Conclusions

How certain our simulations are?

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment

Lead time vs Efficiency Ensemble Forecast

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

How certain our simulations are?

Lead time test

Nash Sutcliffe efficiency

$$NS = 1 - \frac{\sum (Q_{obs}(i) - Q_{sim}(i))^2}{\sum (Q_{obs}(i) - \bar{Q})^2}$$

Persistence Index

$$PI = 1 - \frac{\sum (Q_{obs}(i) - Q_{sim}(i))^2}{\sum (Q_{obs}(i) - Q_{obs}(i - lag))^2}$$

• Combined Precip and Runoff history

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

(3)

(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast

PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment

Lead time vs Efficiency Ensemble Forecast

How certain our simulations are?

Lead time test

Nash Sutcliffe efficiency

$$NS = 1 - \frac{\sum (Q_{obs}(i) - Q_{sim}(i))^2}{\sum (Q_{obs}(i) - \bar{Q})^2}$$

Persistence Index

$$PI = 1 - \frac{\sum (Q_{obs}(i) - Q_{sim}(i))^2}{\sum (Q_{obs}(i) - Q_{obs}(i - lag))^2}$$

• Combined Precip and Runoff history

Generalization test

- 35 MLPs Ensemble
- Only the Runoff history

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

(3)

(4)

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment

Lead time vs Efficiency Ensemble Forecast

Morávka – Flood Event 1997 – 22.2 km²

Figure: Nash-Sutcliffe Efficiency (Nash et Sutcliffe, 1970)

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model Application Procedure Flood Events Flood event - Characteristics Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin Uncertainty Assessment Ensemble Forecast Conclusions

<ロ>

Morávka – Flood Event 1997 – 22.2 km²

Figure: Persistence Index (Kitanidis et Bras, 1980)

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff

Forecast Q-P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment

Lead time vs Efficiency Ensemble Forecast

Conclusions

Sázava Basin – 381 km²

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - 釣�?

Sázava Basin - 29.6.-10.8. 2002

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model

PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

・ロト・(部)・(ヨ)・(ヨ)・(日)・(の)へ()

Sázava Basin - 21.11–2.12 2002

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives Data Based Runoff Forecast Q-P Linear Model PONS - Nonlinear Model

Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

・ロト・(四ト・(日下・(日下・))の(の)

- Runoff forecast in small headwater catchment still is a Challenge.
- Proposed tested techniques may help to extend the runoff forecast within currently operating Local Warning Systems.
- Runoff forecast based on runoff history is capable to capture development of selected floods, when wrong rainfall data are available.
- Oataset of flood events across the different spatial scale was built up.
- **Uncertainty tests** should be included within similar computations.

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Thank you for your attention.

Possibilities of Flood Forecasting in Small Headwater Catchments: Case Study Czech Republic

Petr Máca, Jana Ředinová, Jirka Pavlásek, Vojtěch Havlíček, Pavel Pech

Introduction

Headwater Basins, Flood Memory Objectives

Data Based Runoff Forecast

Q–P Linear Model PONS - Nonlinear Model Application Procedure

Flood Events

Simulation Results Real Time Runoff Forecast PONS Model

Forecast in Un-gauged Basin

Uncertainty Assessment Lead time vs Efficiency Ensemble Forecast

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?