Effect of steam explosion pretreatment on the specific methane yield of *Miscanthus x giganteus*

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

<u>Theuretzbacher, F.;</u> Lizasoain, J.; Gronauer, A.; Bauer, A. University of Natural Resources and Life Sciences Vienna, Department of Sustainable Agricultural Systems, Division of Agricultural Engineering, e-mail: alexander.bauer@boku.ac.at

Menardo, S.

University of Turin, Department of Agriculture, Forestry, Environmental Engineering and Land Based Economics, e-mail: simona.menardo@unito.it

Nilsen, P.J.

CAMBI, e-mail: paal.j.nilsen@cambi.no

Content

- Background & Objective
- Material and Methods
- Results
- Discussion & Outlook

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

Background & Objective

Future energy production - Quo vadis?

Future energy production - Quo vadis?

- Fossil resources are limited
- Fossil based energy production leads to large emissions of greenhouse gases
- Energy from some solar (sun, water, wind) and geothermal sources is difficult to store and convert (electricity, liquid and solid fuels)
- Biomass provides the possibility of an easy physical, chemical or biological conversion to energy carriers with high energy density per volume
- Energy can be produced "on demand"

State of the Art – Cultivation of maize for energy production

 \odot

- Good soil quality required for convenient DM yields
- Tillage operations necessary every year
- Water supply is a crucial parameter
- Harvest processing needs good planning as there are some important factors (DM content, compaction, contamination) for production of a good silage
- Direct competition to food and feed production if used as an energy crop

Miscanthus – an opportunity for a sustainable feedstock?

- Expensive and complex cropping in the first year (nursery plants)
- No further tillage operation necessary
- Harvestable for 15 years until yields decline
- Harvest takes place in the late winter →
 dry biomass which is easy to store
- Strong lignocellulose complex

 pretreatment necessary for biological conversion
- Not (necessarily) competing with food production if grown on fields with minor soil quality

Processing lignocellulose from agriculture— cradle to cradle

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

05.07.2013

Objective

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

Which methane hectare yields can be achieved if steam exploded Miscanthus is used for biogas production?

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

Materials & Methods

Experimental Setup

- Miscanthus was grown on a research farm about 10 km east of Vienna; the harvest took place in February 2010
- Pretreatment was carried out on a laboratory scale steam explosion facility in As, Norway
- Anaerobic batch experiments were carried out in Tulln, lower Austria

Steam Explosion pretreatment

BOKU

- The biomass was treated with hot steam (190°C and 210°C) for a defined holding time (10, 15 and 20 minutes)
- Sudden pressure drop cause an immediate vaporization of water inside the biomass
 → "popcorn effect"
- Intensity of pretreatment expressed as "severity factor"

Analysis of the biological methane potential (BMP)

- BOKU
- 0
- Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

- Experiments were carried out at 37.5 °C using 250 ml
 Eudiometer batch systems
- For inoculation the liquid fermentation residue of a energy plant driven biogas plant was used
- Experiments last around 40 days

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

Results

Effect of SE pretreatment on Miscanthus – REM microscopy

Biogas and methane potential of untreated and steam explosion treated Miscanthus

	DM	VS	Severity factor	biogas	methane
	[%FM]	[% DM]	[Log(R0)]	[I _N kg VS ⁻¹]	[I _N kg VS ⁻¹]
untreated	88.4	97.9	-	130	84
190°C, 10 min	32.4	97.8	3.7	363	248
190°C, 15 min	36.0	97.7	3.8	448	279
190°C, 20 min	32.9	97.8	4	466	308
210°C, 10 min	28.0	97.4	4.2	541	345
210°C, 15 min	24.9	97.3	4.4	517	333
210°C, 20 min	24.0	97.6	4.5	511	331

Model for Miscanthus yields all over Europe

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

Source: Clifton-Brown et al., 2004

How much methane could be produced from Miscanthus?

Low = 12 t DM ha^{-1} y^{-1} ; Middle = 18 t DM ha^{-1} y^{-1} ; High= 21 t ha^{-1} DM y^{-1}

Methane hectare yields of maize as reported in literature 11.000 10.000 9.000 8.000 7.000 6.000 low 5.000 high 4.000 3.000 2.000 1.000 0 Amon et al. Amon et al. Schittenhelm Tatah (2008) Amon et al. (2008)(2002)(2003)(2007)

methane hectare yield $[m^3 CH_4 ha^{-1} y^{-1}]$

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

Discussion & Outlook

Discussion & Outlook

- First results show already a high competitiveness of biogas production from steam explosion pretreated Miscanthus to conventional biogas production out of maize
- Further investigations have to be done concerning reliability of Miscanthus yields
- Areas in which miscanthus can be grown without competing to food and feed production have to be identified
- A source of unused thermal energy is crucial for a sustainable application of the steam explosion pretreatment

Thank you very much for your attention!

Franz Theuretzbacher, MSc franz.theuretzbacher@boku.ac.at

Universität für Bodenkultur Wien Department für Nachhaltige Agrarsysteme

Department for Sustainable Agricultural Systems

Division of Agricultural Engineering

Working area for environmental engineering & bio-refinery

