

5th CASEE Conference "Healthy Food Production and Environmental Preservation – The Role of Agriculture, Forestry and Applied Biology"

IMPACT OF AMMONIA-LOADED ZEOLITE ON ITALIAN RYEGRASS GROWTH AND YIELD*

Iva Živanović¹, Aleksandar Simić¹, Vesna Rakić¹, Vladislav Rac¹, Željko Dželetović²

¹University of Belgrade, Faculty of Agriculture, Beograd – Zemun. ²University of Belgrade, INEP Institute for the Application of Nuclear Energy, Beograd – Zemun.

* This research is supported by the Norwegian Programme in Higher Education, Research and Development (Project: The use of natural zeolite (clinoptilolite) for the treatment of farm slurry and as a fertilizer carrier).

- Application of zeolite in agriculture as nitrogen retaining medium
- Experiment methodology
- Number of seedlings, plant height, yield
- Italian ryegrass response to treatments, increase of yield

- Zeolites are aluminosilicate minerals widely used as an ion exchange beds
- There are over 40 naturally occurring types and over 200 types in all
- Our experiment was conducted with a natural zeolitic tuff (from "Zlatokop" mine in South Serbia, containing ~70wt. % of clinoptilolite)
- Ammonia-loaded zeolite was formed by binding of ammonia ions from aqueous solution

Clinoptilolite

- natural, inert and non-toxic material
- can be used as a slowly releasing carrier of fertilizer
- it can improve physical properties of soils
- it can be used for treatment of contaminated soils

The name is derived from the Greek words klino (κλίνω;"oblique"), ptylon (φτερών;"feather"), and lithos (λίθος;"stone").

- Clinoptilolite can also influence bioavailability of other plant nutrients
- It can take up ammonium cation from either farmyard manure, composts, or ammonium-bearing fertilizers, thereby reducing losses of nitrogen to the environment
- Clinoptilolite can be recommended for agricultural purposes in terms of sustainable fertilizing and improving system cattle farm - manure - organic fertilizer for forage crops

- Italian ryegrass is an important short duration forage crop in Serbia
- It is highly valued for forage/livestock systems
- Well-adapted to different environmental conditions
- Characterized by fast growth that secures quick tillering, high yield potential and fitness for reduced cultivation

The experiments carried out in greenhouse included four different treatments:

- a) soil (control)
- b) soil+zeolite CLI (10 g kg⁻¹)
- soil+ammonia-loaded zeolite NH₄⁺-CLI (10 g kg⁻¹ equivalent to nitrogen application of 100 kg ha⁻¹ N)
- d) nitrogen application by mineral fertilizer Calcium ammonium nitrate CAN (100 kg ha⁻¹ N, CAN contains 27% nitrogen)

all in 4 replications

The soils used for the experiment were:

- Pseudogley (*Planosol*) collected from the site in Varna (West Serbia) is marked as conditionally productive soil
- Dystric brown soil (*Dystric Cambisol*) collected from the site in Vlasina (South-East Serbia) is marked to serious restrictions

Soil properties:

		Chemical properties					
Soil type	Textural class	рН			AL-		
		in H ₂ O	in CaCl	AL-P ₂ O ₅ mg kg ⁻¹	K ₂ O mg	Total C %	Total N %
					kg⁻¹		
Planosol	Sandy loam	5.73	5.07	19.8	115.1	1.37	0.16
Dystric Cambisol	Clay loam	5.10	4.18	6.7	63.0	1.10	0.096

- The pots were filed with 2 kg of air-dried soil
- Italian ryegrass seed was sown on December 2013. at a rate of 50 seeds per pot
- Plants were were thoroughly watered
- Plants were cut back three times in all the individual experimental pots, about 3 cm above soil level

Planosol

Dystric Cambisol

Number of seedlings (Standard Deviations appear in parentheses)

	Control	CLI	NH ₄ ⁺ – CLI	CAN
Planosol	44.5ª (1.12)	43.5 ^a (1.80)	44.5 ^a (1.50)	44.8 ^a (2.86)
Dystric Cambisol	41.2ª (2.86)	46.8 ^a (2.05)	43.0 ^a (1.22)	44.5 ^a (1.11)
Means with differing superscripts are significantly different (P<0,05)				

Dystric Cambisol

Planosol

Plant height (Standard Deviations appear in parentheses)

	Control	CLI	NH₄⁺– CLI	CAN
Planosol	24.33ª (0.78)	24.82ª (2.68)	24.45 ^a (0.35)	24.10 ^a (1.02)
Dystric Cambisol	22.60 ^b (1.35)	22.2 ^b (1.30)	22.13 ^b (0.62)	22.31 ^b (0.62)
Means with differing superscripts are significantly different (P<0.05)				

- In relation to the plants grown on Dystric Cambisol the plants grown on Planosol were 8.3 % higher in average
- Soil acidity of Dystric Cambisol could have an inhibitory effect on plant growth and leaf elongation

Dry matter yield, in grams (Standard Deviations appear in parentheses)

	Control	CLI	NH ₄ +– CLI	CAN		
I cut / I otkos						
Planosol	0.2649 ^a (0.0197)	0.2423 ^a (0.0295)	0.2847 ^a (0.0082)	0.2652 ^a (0.0153)		
Dystric C.	0.1835 ^b (0.0087)	0.1888 ^b (0.0209)	0.1455 ^b (0.0259)	0.1571 ^b (0.0026)		
II cut / II otkos						
Planosol	0.4628ª (0.0121)	0.4166 ^a (0.0482)	0.4948 ^a (0.0518)	0.4565 ^a (0.0664)		
Dystric C.	0.2381 ^b (0.0211)	0.2677 ^b (0.0269)	0.2504 ^b (0.0155)	0.2321 ^b (0.0248)		
III cut / III otkos						
Planosol	0.5071 ^b (0.1143)	0.3748 ^b (0.0444)	0.7684ª (0.1006)	0.6841ª (0.0773)		
Dystric C.	0.3827 ^c (0.0438)	0.4103 ^c (0.0198)	0.4247 ^b (0.0265)	0.5053 ^b (0.0615)		
Means with differing superscripts are significantly different (P<0.05)						

- The delayed effect of the treatments could be explained by the limiting effect of irradiance
- Both the total level of irradiance and the photoperiod, spectral composition and direction of the light affect plant development

Total dry matter yield of Italian ryegrass, in grams

- Plants may have a good response if clinoptilolite is used as a nitrogen fertilizer carrier
- Obtained results suggest that Italian ryegrass reacts to N supply increasing the yield of dry weight in relation to control
- Italian ryegrass dry matter quality is yet to be analysed
- The next stage of our research will be testing the results in field conditions.

Thank you