

University of Natural Resources and Life Sciences, Vienna

Environmental impacts of agromunicipal resource use in an Alpine municipality

Iris Kral

7th CASEE Conference "The Role of Life Sciences in Europe's 2020 Strategy"

22th - 24th May, 2016

Introduction

University of Natural Resources and Life Sciences, Vienna

The problem in Alpine areas

- Traditional open landscape disappearing reforestation
- Threatens tourism, specialized eco-systems and eco-system services, and increases risk of natural hazards

Case study Alpine municipality in Austria

- Dependent on tourism and tourism dependent on open landscape
- 517 ha grassland no longer in production (Frühauf 2013)
- Lignified biomass not appropriate as feed

Local biogas production - a viable/interesting alternative?

University of Natural Resources and Life Sciences, Vienna

Steam Explosion I

Pretreatment of biomass

- high temperature, saturated steam (140 -240 °C) for 5 20 min
- rapid pressure drop
- ightarrow easily digestible input material for anaerobic digestion

Method

- LCA adds all emissions and resource use (e.g. diesel use and CO₂ emissions) from manufacturing to disposal
- LCA calculates their environmental impacts
- LCA works for products and production systems at different scales

Case study methods

Tall & COMP

Scenario comparison- Overview

University of Natural Resources and Life Sciences, Vienna

Key numbers

- Rated power of the CHP (combined heat and power) unit: 500 kW_{el}
- Main components of biogas plant: concrete, asphalt, crushed rocks, steel, iron
- Electrical efficiency: 38%
- 50% off-heat usage

Life cycle assessment specifics

University of Natural Resources and Life Sciences, Vienna

- ➢ Functional unit: 1 kWh_{el}
- Open LCA v.1.4 with adjusted ReCiPe Midpoint and CED methods for analysis
- Primary data sources: CHP and steam explosion technology manufacturers; case study municipality
- Database for secondary data: ecoinvent v.2.2 (Swiss centre for life cycle inventories, 2010)
- Statistical tests: Mann-Whitney-U-test and Wilcoxon-rank-sum-test

3.0

Global warming potential (GWP100) results

Department of Sustainable Agricultural Systems

University of Natural Resources and Life Sciences, Vienna

Global warming potential* of status quo 0.488 kg CO_2 -eq kWh_{el}⁻¹ - Contributions

University of Natural Resources and Life Sciences, Vienna

Global warming potential* of local biogas 0.379 kg CO_2 -eq kWh_{el}⁻¹ - Contributions

University of Natural Resources and Life Sciences, Vienna

Comparison of impact categories

University of Natural Resources

University of Natural Resources and Life Sciences, Vienna

Conclusions

- Locally produced biogas has a very high probability of having significantly lower global warming potential than status quo.
- However there is **no clear overall "winner**" for all impact categories

Thank you for your attention!

Project team: Molly Saylor, Iris Kral, Gerhard Piring Alexander Bauer, Andreas Gronauer