

Soil Nitrogen Leaching from Different Textural Soils Based on Fertilization and Activity of Soil Organisms

Valentina ŞANDOR, Roxana VIDICAN*, Mignon ŞANDOR, Vlad STOIAN roxana.vidican@usamvcluj.ro

The 7th CASEE Conference The Role of Life Sciences in Europe's 2020 Strategy" 22th – 24th May, 2016

INTRODUCTION

- The use of nitrogen based fertilizers factor for increased agricultural production in the world.
- Disadvantages:
 - soil pH reaction change
 - changes in soil biota activity
 - nitrogen leaching
 - negative environmental impacts

Necessity: deepen the understandings about soil leaching - to avoid pollution.

Aim: the role of soil texture in combination with different fertilizers and soil organisms on leaching phenomena.

EXPERIMENTAL DESIGN

SOIL

FERTILIZERS

SOIL FAUNA

Colembolans *Folsomia candida*

Earthworms *Lumbricus terrestris*

- ✤ Arable fields
- Dried 20°C
- Sieved 2 mm
- Humidity 20 %
- ✤ DA= 1.2 g cm⁻³

General characterization of the experimental soil properties

Properties	First soil	Second soil
рН	6.33	6.83
Carbohydrates	0.42	0
Humus	2.38	2.69
Texture	Sandy	Loamy

The 7th CASEE Conference The Role of Life Sciences in Europe's 2020 Strategy" 22th – 24th May, 2016

SOIL FAUNA

buttom with microporous material to avoid animals for escaping

A system of plastic wires and irrigation computer \longrightarrow leaching effect Water was dripping inside each column in the same quantity (200 ml/week/container) Leachate was collected in 2 sampling weeks (2nd; 7th) in 100 ml plastic containers

Ammonium and nitrate were measured by spectrophotometric method – PhotoLab S12 Leachate \longrightarrow stored - 20^oC \longrightarrow filtered \longrightarrow analyzed

The 7th CASEE Conference The Role of Life Sciences in Europe's 2020 Strategy" 22th – 24th May, 2016

The 7th CASEE Conference The Role of Life Sciences in Europe's 2020 Strategy" 22th - 24th May, 2016

(average ± SD), (*) - p<0.05 TukeyHSD and trends (start and end of experiment)

The 7th CASEE Conference The Role of Life Sciences in Europe's 2020 Strategy" 22th - 24th May, 2016

RESULTS AND DISSCUSIONS

- soil fauna

+ soil fauna

NH₄.end

Min.fert.sandy	6×7 than Control.sandy	Min.fert.sandy	8 x \nearrow than Control.sandy	
Min.fert.loamy	2×7 than Control.loamy	Min.fert.loamy	10 x \nearrow than Control.loamy	
Min.fert.sandy	2 x ↗ than Org.fert.sandy	Min.fert.sandy	2 x ¹ than Org.fert.sandy	
Min.fert.loamy	4 x ↗ than Org.fert.loamy	Min.fert.loamy	27 x ¹ than Org.fert.loamy	
Org.fert.sandy	3 x ↗ than Control.sandy	Org.fert.sandy	5×7 than Control.sandy	
Org.fert.loamy	3 x ↘ than Control.loamy	Org.fert.loamy	3×1 than Control.loamy	
NO ₃ .end				
Min.fert.sandy	13 x [↑] than Control.sandy	Min.fert.sandy	15 x ↗ than Control.sandy	
Min.fert.loamy	8 x [↑] than Control.loamy	Min.fert.loamy	9 x ↗ than Control.loamy	
Min.fert.sandy	10 x ⁷ than Org.fert.sandy	Min.fert.sandy	12 x [≠] than Org.fert.sandy	
Min.fert.loamy	7 x ⁷ than Org.fert.loamy	Min.fert.loamy	24 x [≠] than Org.fert.loamy	
Org.fert.sandy	1 x [↑] than Control.sandy	Org.fert.sandy	1 x [↑] than Control.sandy	
Org.fert.loamy	1 x → than Control.loamy	Org.fert.loamy	3 x → than Control.loamy	

CONCLUSIONS

- Overall microcosms, ammonium and nitrate leachate was higher in sandy soil
- Higher ammonium and nitrate values were registered in the treatments with mineral fertilizer
- Presence of soil biota had a low influence on leached nitrogen

<u>Corresponding authors:</u>

sandorvalentina@yahoo.com sandor.mignon@usamvcluj.ro

Acknowledgements

This paper was published under the frame of UEFISCDI, research project PN-II-RU-TE-2014-4-2490.

