

PREDICTION APPROACH TO INTERPHASE CONTROL THROUGH PROTEIN PROFILE OF THE SUNFLOWER SEED (*HELIANTHUS ANNUS* L.) USED TO HALVA PROCESSING

Ramona Suharoschi Institute of Life Sciecens – Molecular Nutrition Lab

Nitra, 25th May 2015

<u> Agricultura – Știință și practică</u>

A PROPOSED CURATION PROTOCOL FOR DISCOVERY CANCER POTENTIAL BIOMARKER CANDIDATES

nr. 1- 2(81-82)/2012

Suharoschi Ramona^{1*}, Iuga Cristina^{2*}, N Crisan³, D Pamfil¹, O Balacescu⁴, IL Muntean⁵

 ¹ Molecular Nutrition & Proteomics Lab, Food Science and Technology Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, <u>ramona suaroschi@usamvcluj.ro</u>;
 ²Drug Analysis Department, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania,<u>iugac@umfcluj.ro</u>
 ³ Municipal Clinical Hospital, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
 ⁴Oncology Institute "Dr Ion Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
 ⁵ Computer Science Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Experiences in Designing a Distributed Service-Oriented Platform for In-Silico Biomarker Discovery and Validation

Ioan Lucian Muntean*, Bogdan Rotaru*, Ramona Suharoschi[†] and Cristina Iuga[‡] *Computer Science Department Technical Univesity of Cluj-Napoca, Romania [†]Food Science and Technology Department University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania [‡]Drug Analysis Department University of Medicine and Pharmacy, Cluj-Napoca, Romania

Fig. 1 Biomarker discovery and validation services provided through the intergative open software platform BioGenProtOMICS (developed by IL Muntean, C Iuga and R Suharoschi)

After: Suharoschi, 2012

 AIM: approach the interphase control of the protein profile alteration during Halva processing wash & dry

Justification

Lipids 47-65% FA (PUFA/MUFA): linoleic 51-73% oleic 15-37% linolenic 0,3%

20-40% Proteins Globuline (Helianthinin), Albumine AA:Methionin, Cisteine, Lisine

Minerals 3-4% (P,K,Mg,Se,Na) Vitamins E, A, B₁, B₉ Organic acids: a.Clorogenic a.Quinic

Bulletin UASVM Agriculture, 67(2)/2010 Print ISSN 1843-5246; Electronic ISSN 1843-5386

Comparison of Sunflower Halva Products from Romanian Market

Emil RACOLTA, Vlad MUREŞAN, Sevastita MUSTE, Cristina Anamaria SEMENIUC

University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, Mănăștur Street, No.3-5, 400372, Cluj-Napoca, Romania; emil_racolta@yahoo.com

Abstract. Halva is a traditional confection, consists of tahini (sesame paste), cooked sugar and

soapwort root

BASE

Biotechnol. Agron. Soc. Environ. 2013 17(4), 651-659

Focus on:

Confectionery products (halva type) obtained from sunflower: production technology and quality alterations. A review

Vlad Mureşan ^(1,2), Christophe Blecker ⁽¹⁾, Sabine Danthine ⁽¹⁾, Emil Racolţa ⁽²⁾, Sevastiţa Muste ⁽²⁾

⁽¹⁾ Univ. Liege - Gembloux Agro-Bio Tech. Food Science and Formulation Department. Passage des Déportés, 2.
 B-5030 Gembloux (Belgium). E-mail: vlad_muressan@yahoo.com
 ⁽²⁾ University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Faculty of Food Science and Technology.
 Department of Food Engineering. Calea Floreşti, 64. RO-400509 Cluj-Napoca (Romania).

J Am Oil Chem Soc (2015) 92:669–683 DOI 10.1007/s11746-015-2622-7

ORIGINAL PAPER

Roasted Sunflower Kernel Paste (Tahini) Stability: Storage Conditions and Particle Size Influence

Vlad Mureșan¹ · Sabine Danthine² · Sorana D. Bolboacă³ · Emil Racolța¹ · Sevastița Muste¹ · Carmen Socaciu⁴ · Christophe Blecker²

Technological flowchart of the sunflower tahini

Flowchart of the sunflower samples proteins assessment

Soft NERCOLE D	
1869	
	_
USAMV	
· QUE-NAROLA	

Extract	tion phase	Isopropanol extraction sample	n-hexane extraction sample	
	Extraction time	2 hours	4 hours	
Pamoya Linida	Centrifuge	10 min., 15000 rpm, 4°C	20 min., 5000 rpm, 4°C At room temperature (RT)	
Remove Lipids	Drying	At drying owen, 31-32°C, 15 min.		
	Groats color (fig. 2 and 3)	Pale-brown, p5-darker	p2-brown, p1-white	
	Centrifuge	25 min.,13000 rpm, 18°C	x3 times, 25 min. 18000 rpm, 4°C	
Total protein extraction	Protein extract color (fig. 5)	white, p3-pale green	Dark green, brown, p5-brown	
Determination of protein concentration	Dilution	1:15	1:70	
Protein purification	Laemmli reagent	50 µl	100µl	

1869 USAMIV.et

SDS-PAGE (Laemmli method)

SDS-PAGE gel analysis with QuantityOne[®] (v4.6.3) (Bio-Rad)

Roasted – 15 proteins (Lane3) (nH); 18 (IP) (Line 5: Mw:84-13kDa) Raw – 21 proteins (Line 4); 11 (IP) (Line 6: Mw:84-13kDa)

Sample 1(raw kernel), n-hexan (Helianthus annus L.)

Line/Band	Mw (Da) prot.identif gel	Proteine Tagldent (pl=(3-10); Mw range=10%)
5-1	87,444	PSAA, PSAB, RPOC1, NU5C
5-2	79,346	PALY, PSAA, PSAB, RPOC1, NU5C
5-3	73,817	PALY, RPOC1
5-4	68,678	GAS2, PALY, CS, GAS1
5-5	63,209	GAS2, TCMO, MATK, CALX, CS, GAS1
		CATA, TCMO, NU4C, PSBB, ACCD, ATPB, PSBC, ATPA,
5-6	54,518	MATK, CALX, SLD
5-7	45,943	SYS, PRS6B, NDHH, PSBC
5-8	44,101	PRS6B, NU1C, NDHH, STAD
5-9	42,448	STAD, PSBD, NU1C, FPPS
5-10	39,327	SF21, FPPS
5-11	37,239	CCSA, NU1C, PSBD, PSBA, RPOA
5-12	32,674	RL5, DCAM, CYF, PP2A, 11S3
5-13	31,547	CYF, DCAM, 11S3
5-14	29,928	COX3, RS3A, CYF
5-15	28,33	1433, COX3, RS3A
5-16	26,817	PSBO, RR3, CEMA, ATPI, RR2
5-17	19,674	NDHI, YCF3, GPX4, GPX1, 11S3, YMF19, PSBP, UP1
5-18	18,652	GPX1, YMF19, NU6C, NDHJ, HSP21
5-19	16,82	CALM, NDK, PETD, 2SS5
5-20	15,814	2SS5, RBS, CALM
5-21	13,91	NU3C, NU3M, RK14, PROF, RBS

Sample 5 (roasted kernel), n-hexan (<i>Helianthus annus</i> L.)						
Line/Band	Mw (Da) prot.identif gel	Protein- Tagldent (pl=(3-10); Mw range=10%)				
3-1	84,583	PSAA, NU5C				
3-2	79,766	PALY, PSAA, PSAB, RPOC1, NU5C				
3-3	67,657	GAS2, CS, GAS1				
3-4	58,943	MATX, CALX, TCMO, CATA, NU2C1, NU2C2,NU4C				
3-5	46,73	PRS6B, NU1C				
3-6	42,219	STAD, NU1C, SF21, PSBD				
3-7	39,42	PSBD, PSBA, RPOA, NU1C, FPPS, SF21, STAD				
3-8	31,709	11S3, CYF, DCAM				
3-9	28,333	1433, CYF, COX3, RS3A				
3-10	21,611	GPX4, CSPL, 11S3, PSBP, UP1, CLPP, YCF3, ATPF, NDHI				
		GPX4, GPX1, CSPL, 11S3, PSBP, UP1, NU6C, CLPP, YCF4,				
3-11	20,359	ATPF, NDHI				
3-12	18,104	YMF19, NDHJ, NU6C, GPX1, RK22				
3-13	16,565	2SS5, HSP11, YMF19, HSP21, CALM, RK22, PETD, NDK				
3-14	14,317	PROF, RBS, NU3M, RK14, ATPE, NU3C				
3-15	13,366	PROF, RBS, 2SS8, NU3M, RK14, ATPE, NU3C				

Bio-Rad Quantity One Software (Version 4.6.3 for Windows)

in silico flowchart

Tagldent (prediticve proteins)

Check for protein sequences
with cysteines in reduced form (-SH)
with cysteines oxidized (-S-S-)

To run the search: Start Tagldent or Reset

Tagldent

Results from Tagldent

The search in UniProtKB/Swiss-Prot has been launched with the following values: pl range: 3 - 10 Mw range: 53012.85 - 58593.15 with cysteines in reduced form OS/OC/OX = Helianthus (corresponding to TaxID: 4231) KW keyword = ALL

Scan done on 9-Jun-2014. UniProtKB/Swiss-Prot Release 2014_05 of 14-May-14: 545388 entries

	Swiss-Prot
Number of proteins found in the specified pl/Mw ranges	15

Scan in UniProtKB/Swiss-Prot database (545388 entries)

15 proteins found in the specified pl/Mw range

GAO_HELAN (D5JBX0)

otein	helianthus annus	8 Search	
	Save search Advanced	()	lelp
Dis	play Settings: 🕑 Summary, 20 per page, Sorted by Default order Send to: 🕑	Filters: Manage Filters	
Re	sults: 1 to 20 of 12500 << First < Prev Page 1 of 625 Next > Last >>	Results by taxon	(e
1 .	unnamed protein product [Helianthus annuus] 341 aa protein Accession: CAC40001.1 Gl: 14274048 GenPept FASTA Graphics Related Secuences Identical Proteins	Top Organisms [Tree] Helianthus annuus (12453) Tobacco streak virus (12) Arabidopsis thaliana (2) All other taxa (33)	
□ 2.	ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, partial (plastid) [Helianthus annuus]	Find related data	
	405 ad protein Accession: Accession: Accessi	Find Items	
] 3.	RecName: Full=Delta(8)-fatty-acid desaturase: AltName: Full=Delta(8)-sphingolipid desaturase [Hellanthus annuus]	Search details	
	458 aa protein Accession: Q43469.1 Gl: 75319741 GenPept FASTA Graphics Related Sequences Identical Proteins	"Helianthus annuus"[Organism] OR helianthus annus[All Fields]	
☐ 4.	RecName: Full=ATP synthase epsilon chain. chloroplastic: AltName: Full=ATP synthase F1 sector epsilon subunit; AltName: Full=F-ATPase epsilon subunit (chloroplast) [Heilanthus annuus]	Search	1

<u>UniProtKB</u>

UniProt		IniProtKB+	helan				Adva	inced + Q Search
BLAST Align Retrieve/ID map	ping					and the second second	0000	Help Conta
Results							About Unif	ProtKB 🛱 Basket
ilter by ⁱ	÷	BLAST	Nign ± Download	H Ad	d to basket 🛛 🖍 Columns		1 to 25 of 2,81	2 🕨 Show 25
Reviewed (152)		Entry 🛢	Entry name 🛢		Protein names 🗣	🕅 Gene names 🗘	Organism 🗘	Length 🗘
Swiss-Prot		Q4GWU5	SFTI1_HELAN	2	Trypsin inhibitor 1	sfti1	Helianthus annuus (Common sunflower)	56
Unreviewed (2,660)		P23110	2SS8_HELAN		Albumin-8		Helianthus annuus (Common sunflower)	141
Opular organisms HELAN (2,787)		Q4U3F6	CS_HELAN	5	Alpha-copaene synthase	cs	Helianthus annuus (Common sunflower)	555
TuYV (6)		Q4U3F7	GAS1_HELAN	-	Germacrene A synthase 1	GAS1	Helianthus annuus (Common sunflower)	559
BWYV (4) PSENA (2)		B0FGA9	GAS2_HELAN		Germacrene A synthase 2	GAS2	Helianthus annuus (Common sunflower)	559
Pseudois nayaur nayaur (13)	0	P82007	NLTP1_HELAN		Non-specific lipid-transfer protein		Helianthus annuus (Common sunflower)	116
Search terms		004058	PALY_HELAN		Phenylalanine ammonia-lyase	PAL	Helianthus annuus (Common sunflower)	667
organism (2,787)		Q43469	SLD1_HELAN	-	Delta(8)-fatty-acid desaturase	sid1	Helianthus annuus (Common sunflower)	458
strain (2) axonomy (2,789)		P18260	ATPAM_HELAN	-	ATP synthase subunit alpha, mitocho	АТРА	Helianthus annuus (Common sunflower)	510
virus host (10)		P45738	RBL_HELAN	-	Ribulose bisphosphate carboxylase I	rbcL	Helianthus annuus (Common sunflower)	485
liew by		P19084	11S3_HELAN	-	11S globulin seed storage protein G	HAG3	Helianthus annuus (Common sunflower)	493

Protein name	ID (ID-UniProt)	Molecular weight (Mw) (Da)	pI	Aminoacid sequence length	Cellular component (GO)	Molecular function (GO)	Biological process (GO)	Gene
Photosystem II CP47 chlorophyll apoprotein	PSBB_HELAN	56176	6.27	508	chloroplast thylakoid membrane; photosystem II	chlorophyll binding	Photosynthesis	psbB
ATP synthase subunit alpha	ATPAM_HELAN	55487	6.02	510	mitochondrial inner membrane; proton- transporting ATP synthase complex, catalytic core F(1)	ATP binding; proton-transporting ATP synthase activity, rotational mechanism	ATP hydrolysis coupled proton transport	ATPA
Germacrene A oxidase	GAO_HELAN	55088	8.59	488	endoplasmic reticulum membrane	heme binding; monooxygenase activity; oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen; Monooxygenase, Oxidoreductase		NA
Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta	ACCD_HELAN	54284	4.92	480	acetyl-CoA carboxylase complex	acetyl-CoA carboxylase activity; zinc ion binding; Ligase	fatty acid biosynthetic process; Fatty acid biosynthesis, Fatty acid metabolism, Lipid biosynthesis, Lipid metabolism	accD
Ribulose bisphosphate carboxylase large chain	RBL_HELAN	53635	5.97	485	chloroplast	magnesium ion binding; ribulose- bisphosphate carboxylase activity	photorespiration	rbcL
Delta(8)-fatty-acid desaturase	SLD1_HELAN	52232	8.92	458	An integral component of the membrane	heme binding; oxidoreductase activity, acting on paired donors, with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water;	The fatty acid biosynthetic process	sld1
Oxygen-evolving enhancer protein 1	PSBO_HELAN	26525	5.01	324	cell outer membrane; extrinsic component of membrane; photosystem II oxygen evolving complex	calcium ion binding	photosynthesis	PSBO

Protein name	ID (ID-UniProt)	Molecular weight (Mw) (Da)	pI	Aminoacid sequence length	Cellular component (GO)	Molecular function (GO)	Biological process (GO)	Gene
Photosystem II CP47 chlorophyll apoprotein	PSBB_HELAN	56176	6.27	508	chloroplast thylakoid membrane; photosystem II	chlorophyll binding	Photosynthesis	psbB
ATP synthase subunit alpha	ATPAM_HELAN	55487	6.02	510	mitochondrial inner membrane; proton- transporting ATP synthase complex, catalytic core F(1)	ATP binding; proton-transporting ATP synthase activity, rotational mechanism	ATP hydrolysis coupled proton transport	ATPA
Germacrene A oxidase	GAO_HELAN	55088	8.59	488	endoplasmic reticulum membrane	heme binding; monooxygenase activity; oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen; Monooxygenase, Oxidoreductase		NA
Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta	ACCD_HELAN	54284	4.92	480	acetyl-CoA carboxylase complex	acetyl-CoA carboxylase activity; zinc ion binding; Ligase	fatty acid biosynthetic process; Fatty acid biosynthesis, Fatty acid metabolism, Lipid biosynthesis, Lipid metabolism	accD
Ribulose bisphosphate carboxylase large chain	RBL_HELAN	53635	5.97	485	chloroplast	magnesium ion binding; ribulose- bisphosphate carboxylase activity	photorespiration	rbcL
Delta(8)-fatty-acid desaturase	SLD1_HELAN	52232	8.92	458	An integral component of the membrane	heme binding; oxidoreductase activity, acting on paired donors, with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water;	The fatty acid biosynthetic process	sld1
Охудеп-evolving enhancer protein 1	PSBO_HELAN	26525	5.01	324	cell outer membrane; extrinsic component of membrane; photosystem II oxygen evolving complex	calcium ion binding	photosynthesis	PSBO

- to develop and optimize a new extraction method that should be characterize by the high amount of protein extraction with a high purity.
- integrate the low-cost molecular techniques with *in silico* methods.
 - the bioinformatic tools → predict a set of differentially expressed proteins between Halva processing interphases with a potential to develop a interphase control kit with product processing application.
- proteins identified by *in silico* approach need to be validated in wet experiments.
- Design of a healthier product (Mallard compounds → biotechnology processes)

Pros and Cons

Deborah Markowicz Bastos, Érica Monaro, Érica Siguemoto and Mariana Séfora Nutrition Department, School of Public Health, São Paulo University Brazil

1. Introduction

The Maillard reaction was first reported in 1912 by Louis-Camille Maillard, who described that upon gently heating sugars and amino acids in water, a yellow-brown color developed. The reaction that leads to these colorful compounds, firstly described from a simple observation, is actually the result of a complicated pathway of chemical reactions. The Maillard reaction is often described in food systems but it also occurs in living organisms, and in this case, it is called glycation. In biological systems, the ramifications of the Maillard reaction have been observed and analyzed, as this reaction has become important in the field of food science and medicine (Finot, 2005; Gerrard, 2002a).

The consumption of Maillard Reaction Products (MRPs) has increased in recent decades and

(After: Bastos, 2012 INTECH, www.intechopen.com)

Possible biological effects of the Maillard Reaction Products (MRPs) and Advanced Glycation End Products (AGEs) (Based on Somoza 2005)

(After:: Bastos, 2012 INTECH, www.intechopen.com)

AGE-RAGE interaction and its association with atherosclerosis (Based on Hartog et al., 2007) (After: Bastos, 2012 INTECH,www.intechopen.com)

- LSANTY -
 - The study of the *functional capacity of proteins* from the raw sunflower kernels (expreesion, purification and characterization) as **new formulation of a** healthier product (raw sunflower seeds) →
 investigate its sustainability to food industry and human nutrition.
 - Development of a kit with a set of differentially expressed proteins and common proteins → develop and validate as an interphase control kit for Halva processing.

MSc in Gastronomy, Nutrition and Dietetics

FACULTY OF FOOD SCIENCE AND TECHNOLOGY

C. // www.legtentedbeedex.commung.co.teager/18.00019/Teconieg/NA-FA078093NY-007807109-837707104-gd

MSc in Gastronomy, Nutrition and Dietetics

at the University of Agricultural Sciences and Veterinary

This experience include courseverk will be repreresearch assertances, with the constructive to four food comparies and attend the institute of international annual meetine in Club. Students will interact with inderes, finaler, and food industry leaders in a variety of activities to develop a further understanding of food activities to develop a further understanding of food activities and sechnation; food research and the food processing industry the field of Castronomer, Nutrition and Disteric.

CONTACT: RAMONA SUHAROSCHI RAMONA.SUHAROSCHI@USAMVCLULRO

Semester Abroad at usamv cluj – romania

- Molecular gastronor
- Personalized Nutrition and Dietetics
- Traditional Foods
- Food Nutrients and Ingredient
- Physiology
- Applied Research
- AppEed Biostatistics

Aknowledgment

Collaborators: Team: Prof. E. Racolta MSc N. Pinzari Dr. V. Muresan Cluga, PhD, UMF Prof. R Pardini, UNR, USA PhD student A Uifalean, UMF Prof. I Rowland, UU, UoR, UK (Greifswald, Ernst Moritz Uni) Prof. H Klocker, MUI, AT Dumitras, PhD, MSc Prof. D Haltrich, BOKU IL Muntean, PhD, UTCN Dr. M Ladomery, UWE, UK I Neagoe, PhD, IOCN O Balacescu, PhD, IOCN

This work was performed as part of the activities of the Project "Descoperirea in silico de potentiali biomarkeri" financed by the USAMV CN grant 1215/6/06.02.2012

Dr. Ramona SUHAROSCHI ramona.suharoschi@usamvcluj.ro

University of Agricultural Sciences and Veterinary Medicine of Cluj Faculty of Food Science and Technology Institute of Life Sciences Molecular Nutrition Lab (Genomics&Proteomics)

> 3-5 Calea Manastur Str., 400372 Cluj-Napoca, ROMANIA Mobile:+40 728104320 Tel: 0264-596384 Fax: 0264-593792 www.ingineriealimentara.usamvcluj.ro