

Environmental hot spot analysis in agricultural life-cycle assessments

Three Case studies

Gerhard PIRINGER, Alexander BAUER, Angelika STAMPFEL, Molly K. SAYLOR, Andreas GRONAUER, Iris KRAL

6th CASEE conference

"Latest Trends in Bioeconomy in Danube Region"

24th - 26th May, 2015

Slovak University of Agriculture in Nitra, Slovak Republic

Why environmental hot-spot analyses of different agricultural systems?

- More demand for agricultural products, but what about environmental impacts? Need to focus efforts!
- "Hot spots" cause the highest environmental impacts (e.g. enteric fermentation – methane emissions in beef production)
- If "hot spots" are known, can reduce environmental impacts
- Find hot spots with "environmental life-cycle assessment" (LCA)

What is "environmental life-cycle assessment" (LCA)?

- LCA adds all emissions and resource use (e.g. diesel use and CO2 emissions) from manufacturing to disposal
- LCA calculates their environmental impacts
- LCA works for products and production systems at different scales

Three case studies*

Demonstrate how environmental life-cycle assessment (LCA) can be used to find environmental hot spots

Case study 1

Use of mid-sized 2004 82 kW tractor over 24 years

Case study 2

Maize silage production

Biogas electricity from Alpine grassland

*) Stampfel 2014; Kral et al., 2015; Saylor et al., unpublished results

and Life Sciences. Vienna

Life cycle assessment (LCA) model

- Reference quantities (functional units): One mid-sized tractor with a 24-year lifetime; 1 ton Maize silage at the field edge; 1 kWh electricity at the gas engine generator
- Life cycle assessment modelling software: Open LCA v.1.4
- Data: Primary data from manufacturers of tractor and gas engine; Other data from Ecoinvent 2.2 (Ecoinvent Centre 2010) database and literature
- Environmental impact assessment method: "ReCiPe midpoint"* and cumulative energy demand

*) Goedkoop et al. 2013

System diagram tractor (case study 1)

University of Natural Resources and Life Sciences, Vienna

Mid-sized 2004 tractor (81 kW, 110 PS) life-cycle over 24 years

Diesel use and emissions

University of Natural Resources and Life Sciences, Vienna

Farming process	Fuel use (kg h ⁻¹)	CO ₂ (kg h ⁻¹)	HC (g h ⁻¹)	NO _x (g h ⁻¹)	CO (g h ⁻¹)	PM ^a (g h ⁻¹)
Ploughing, 4-furrow reversible mounted plough	12.64	39.82	10.42	304.81	34.07	6.81
Cultivation, 3 m shallow cultivator	12.57	39.61	10.82	301.85	32.20	6.44
Harrowing (seedbed preparation), harrow and packer, 3 m	13.33	42.00	11.23	316.54	35.27	7.05
Baling, round bales, 1.2 m	8.99	28.32	7.42	205.66	28.25	5.65
Bale transport, double trailer, 8 t each	4.94	15.57	5.01	115.91	20.12	4.02

^a Estimated by scaling up CO emission factors using a constant ratio of 0.2 between CO and PM emission factors

Cultivation processes for the studied tractor, process-specific hourly fuel use and exhaust emission factors. HC = Hydrocarbons, PM = Particulate matter.

Potential environmental impacts over 24-year tractor life time

Impact category	Unit	Indicator value	Main contributing Process
Climate change (GWP 100)	kg CO ₂ -Eq	287,822	Diesel combustion during field operation
Freshwater ecotoxicity	kg 1,4-DCB-Eq	329	Diesel extraction and refining
Human toxicity	kg 1,4-DCB-Eq	12,609	Diesel extraction and refining
Particulate matter formation	kg PM10-Eq	555	PM emissions during diesel combustion
Terrestrial acidification	kg SO ₂ -Eq	1,335	NO_x emissions during diesel combustion
Non-renewable energy resources	MJ-Eq	4,182,198	Diesel combustion during field operation

Climate change impacts, contributing processes

System diagram maize silage (case study 2)

Digestate from

University of Natural Resources and Life Sciences, Vienna

Maize silage production (average Austrian process)

Potential environmental impacts

University of Natural Resources and Life Sciences, Vienna

		Potential impact			
Impact category	Unit	per hectareª	per t FM	Main contributing Process	
Climate change (GWP 100)	kg CO ₂ -Eq	1,057	23.2	Chopping maize, diesel emissions	
Freshwater ecotoxicity	kg 1,4-DCB-Eq	2,151	47.2	Herbicides application	
Human toxicity	kg 1,4-DCB-Eq	345	7.6	Zinc in digestate ^b	
Particulate matter formation	kg PM10-Eq	28	0.6	PM emissions, digestate application	
Terrestrial acidification	kg SO ₂ -Eq	197	4.3	NH ₃ emissions, digestate application	
Non-renewable energy resources	MJ-Eq	11,735	257.6	Chopping maize, diesel emissions	

^a 15-year average Austrian yield of 45.55 t FM ha⁻¹ (Statistics Austria, 2014).

^b Zinc in digestate originates mainly from feed in pig slurry that is assumed to be a co-substrate in digestate production.

Climate change impacts per ton maize silage at the field, contributing processes

Case study 3 (biogas electricity from grassland) - potential environmental impacts

University of Natural Resources and Life Sciences, Vienna

Impact category	Unit	Potential impact per kWhat from biogas ^a	Main contributing Process
Climate change (GWP 100)	kg CO ₂ -Eq	3.78E-01	Methane slip in gas engine exhaust
Freshwater ecotoxicity	kg 1,4-DCB-Eq	5.35E-05	Diesel extraction and refining ^b
Human toxicity	kg 1,4-DCB-Eq	1.98E-02	Copper in construction materials
Particulate matter formation	kg PM10-Eq	2.14E-03	PM emissions, digestate application
Terrestrial acidification	kg SO ₂ -Eq	4.35E-05	NH ₃ emissions, digestate application
Non-renewable energy resources	MJ-Eq	2.23E+00	Diesel use for hay production

^a numbers without credits for heat and electricity sources that are replaced by the output from the biogas plant.

^b Diesel is mainly used for grass/hay production.

Climate change impacts per kWh electricity from grassland, contributing processes

How to reduce environmental impacts

- Case study 1 mid-sized tractor: Fuel efficiency measures, exhaust controls and renewable fuels
- Case study 2 maize silage: Efficient machinery operation with up-todate exhaust control systems, as well as low-emission fertilizer application technologies and application under favourable conditions
- Case study 3 grassland biogas: Well-maintained gas engine and lowemission digestate application, efficient machinery operation

- Environmental hot spots in the studied systems change as the systems grow more complex, making the reduction of environmental impacts critically dependent on the chosen system scale.
- Efficient agricultural machinery operation would be a good option to reduce some environmental impacts in all three case studies.

Thank you for your attention

contact: gerhard.piringer@boku.ac.at